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Universal scaling law of the power spectrum in the on-off intermittency
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The power spectrum of the solvable on-off intermittency model previously introduced by the authors is
analytically derived. A scaling law holds in the neighborhood of the critical point. Its universality is numeri-
cally confirmed for coupled maps and a stochastic model.@S1063-651X~98!14111-9#

PACS number~s!: 05.45.1b, 64.60.Fr
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Fujisaka and Yamada first found an intermittent behav
in coupled chaotic oscillators, which occurs when the s
chronized state is broken@1#. In their seminal papers thi
intermittency was calledtype B intermittencyor intermit-
tency caused by chaotic modulation. However, the nameon-
off intermittencyis mostly used in the current literature. Th
phenomenon has been observed in various nonlinear sys
@1–10#. When the synchronized state is stable, the cha
attractor is located in a smooth invariant manifold of low
dimension than that of the full phase space@5#. Slightly be-
yond the critical point, at which the synchronized state
comes unstable for the perturbation out of the invari
manifold, the orbit escapes far away from the invariant ma
fold ~burst oron state! but returns to its neighborhood an
stays there for a long time~laminar phase oroff state!. This
temporal evolution is repeated in an irregular manner. T
nameon-off intermittency comes from this behavior. On th
other hand, most of the intermittency discussed so far,
called Pomeau-Manneville intermittency~types I–III!, is
caused by linear instabilities of periodic trajectories@11,12#.

Though the on-off intermittency is a deterministic ph
nomenon, the theory is founded on stochastic approac
@2,4#. In our previous paper@13# we started to construct
theory based on a deterministic approach, in which we p
posed a map. It enabled us to obtain the exact expressio
the distributions of burst amplitudes and of laminar du
tions, both of which characterize the on-off intermitten
very well because of their power-law behaviors. We der
analytically the power spectrum of the solvable map in
present paper, which is expressed by a scaling function in
neighborhood of the critical point. We give then a plausib
discussion and a numerical test that support that the sca
law is universal.

We can analytically obtain the power spectrum of so
low-dimensional maps using the Frobenius-Perron~FP! op-
erator. If the map is piecewise linear and has a Markov p
tition, the FP operator can be treated as a matrix@14#. The
simplest case in which the on-off intermittency appears
coupled system consisting of two chaotic oscillators. Wh
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versity, Kyoto 606-8501, Japan.
PRE 581063-651X/98/58~6!/7172~4!/$15.00
r
-

ms
ic
r

-
t
i-

e

o-

es

-
of
-

e
e
he

ng

e

r-

a
n

the coupling is strong enough, the two oscillators are s
chronized. As the coupling is decreased, the system reach
critical point at which the synchronization is broken. LetX
andx be the center-of-mass and relative coordinate, resp
tively. Just after the synchronization was broken,x behaves
in an intermittent manner. This is called on-off intermittenc
We proposed a model in which the dynamics ofX andx is
given by the following piecewise linear map:

Xn115H Xn /a, 0<Xn,a,

12Xn

12a
, a<Xn,1,

xn1155
b22xn , 0<xn,b2, 0<Xn,a,

bxn , 0<xn,b2, a<Xn,1,

b2xn

b~12b!
, b2<xn,b,

xn2b

12b
, b<xn,1,

where b5@a/(12a)#1/3. The detailed derivation of the
model from a general coupled system is given by@13#. We
expand the manifold in the vicinity of the invariant one cau
ing the on-off intermittency, and take the lowest order. W
also add the mechanism of reinjection, which enables u
treat the whole model analytically. The reinjection proce
occurs at a distance of the invariant manifold. Thus it do
not affect the characteristic statistics of the on-off interm
tency. We divide the phase spaceR5$(X,x)u0<X,1,0<x
,1% into the domainsRi , j ( i 51,2;j 51,2, . . . ,̀ ) defined
as R1,j5$(X,x)u0<X,a,bj<x,bj 21%, R2,j5$(X,x)ua
<X,1,bj<x,bj 21%. Set Rj5R1,jøR2,j , and we haveR
5R1øR2øR3•••. The domainR1,j is mapped intoRj 22
andRj 11 , R2,j ( j >3) into Rj 11 . The domainsR1 andR2
are mapped intoR. Thus the domainsR1,j andR2,j construct
a Markov partition ofR. The elements of the FP matrix o
this system are given as follows:

x
-
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H j ,1512b, j >1,

H j ,25b~12b!, j >1,

H j , j 125ab2, j >1,

H j , j 215~12a!b21, j >4,

Hi , j50, otherwise.

The FP matrix always has a nondegenerate eigenvalu
unity @15#. Let the corresponding right and left eigenvect
hj and v j , respectively. The probability densityP(x) is
given byP(x)5( j 51

` hjEj (x), where the characteristic func
tion Ej (x) is equal to 1 forxPRj and 0 otherwise. The
elementv j corresponding to the width ofRj in the x direc-
tion is given byv j5bj 21(12b). The elementhj is given by
h15r (q1n1), h25r (q1n2), and hj5r (q1n j 23) for j
>3, where ac51/3, a5ac(11e), b5@a/(12a)#1/3, q5
2b(12ab2n2)/(12a), n5@A(423a2)a2a#/(2ab), n1
5@11ab2(12n2)#, n25@11ab2n(12n)#, and r 5@q
1(12b)n11b(12b)n21b2(12b)/(12bn)#21 By use of
the FP matrix the power spectrumI (v) is given by

I ~v!5(
l ,m

v lul~2 Re@Rlm#2d lm!umhm ,

whereRlm is the lm element of 1/(E2zH) @14#. The unit
matrix and the FP matrix are denoted byE and H, respec-
tively, andz5exp@iv#. The variableul is the l th element of
the observable under consideration. The real part ofZ is
denoted by Re@Z#.

For simplicity, we consider hereafter the binary time s
ries in whichul51 for l 51,2, ul50 for l>3. The laminar
and burst phase correspond to 0 and 1, respectively. In
case we need the four elementsR11, R12, R21, R22 only.
The elementRi j is given by the adjoint of thei j element of
E2zH divided byuE2zHu. It can be shown thatuE2zHu is
given by the relation uE2zHu5(11a1b)Am22
2agBm221bgCm22 for the m-dimensional truncated ma
trix, where a52z(12b), b5ba, g52zab2, d52z(1
of
r

-

is

2a)/b. In the same way, the adjoint of the~1,1! element is
given by (11b)Am221bgCm22 , so that we have

R115@~11b!Am221bgCm22#/@~11a1b!Am22

2agBm221bgCm22#. ~1!

Each ofAm , Bm , and Cm is the determinant of a definite
m-dimensional matrix, and can be expressed by the dete
nants of the lower dimensional matrices, which is summ
rized as

Am132Am122gd2Am50,

Bm131gBm112g2dBm5Am121gdAm ,

Cm131gCm112g2dCm5~d21!Am112gdAm .

The solutionsAm of the third-order linear homogeneou
difference equation are written in the formAm5Aar1

m

1Abr2
m1Acr3

m (ur1u>ur2u>ur3u), where r1 , r2 , and r3

are the solutions of the characteristic equationr32r2

2gd250 and Aa , Ab , and Ac can be expressed by firs
three terms. We haveAm;Aar1

m for m→`. The solutions
Bm and Cm of the third-order linear inhomogeneous diffe
ence equation are expressed by the general solution a
by the special solution. Since each of the moduli of the
lutions of the characteristic equation forBm andCm is shown
to be less thanur1u, only the contribution of the special so
lution is appreciable form→`. Following the method of
variation of constants, we substituteBm5Br1

m into the dif-
ference equation forBm , and hereafter we denoter1 by r,
so that we haveB5BfAa , Bf5@r21gd#/@r31gr1dg2#.
In the same way forCm we haveC5CfAa , Cf5@(d21)r
2gd#/@r31gr1dg2#. When we take the contribution o
rm only into account form→`, Eq. ~1! reduces toR11
5@(11b)1bgCf #/@(11a1b)2agBf1bgCf #, where
the common factorAarm22 was removed. In the same wa
we haveR125@2b1bgBf #/@(11a1b)2agBf1bgCf #,
R215@2a2agCf #/@(11a1b)2agBf1bgCf #, R225@1
1a2agBf #/@(11a1b)2agBf1bgCf #. Thus we have
the analytical expression of the power spectrum
p
FIG. 1. Power spectra of the solvable ma
at e50.001 (L), 0.002 (1), 0.003 (h),
0.005 (3), 0.01 (n).
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FIG. 2. Scaling function and the origina
power spectra of the solvable map who
angular frequency is scaled byvc52pe2 at e
50.001 (L), 0.002 ~1!, 0.003 (h),
0.005 (3), 0.01 (n).
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I ~v!5~12b!~h12bh2!~2 Re@ I num/I den#21!,

I num5r21gr1gd~g1d!,

I den5~11a1b2ag!r21g~11a1bd!r

1gd~g1d1da1db!.

Figure 1 depicts the power spectra ate50.001,
0.002,0.003,0.005,0.01.

Taking the lowest order ofe andv, we have

I ~v!5
f

A2
ReF e/2

Ae2/42 iv2e/2
G ,

f 54~53t2242t230!/@9A2~2t214t22!#'0.263046,

t521/3,

which can be expressed by the scaling function

I ~x!5
f

AA11~8px!211
, ~2!

where the scaled angular frequencyx5v/vc were intro-
duced. As we will show later, the characteristic time is giv
by tc5s/L2, with the transverse Lyapunov exponentL
;(ln 2/3)e and its variances5(ln 2/3)22(ln 2/3)e for e
→0, so that we havetc51/e2 andvc52p/tc52pe2. This
scaling function and the original power spectra whose an
lar frequency is scaled byvc are shown in Fig. 2.

The scaling function behaves asf /A2 for x!1 and f /Ax
for x@1. The latter is nothing but the –1/2 power-law dec
of the power spectrum known as one of the remarkable c
acteristics of the on-off intermittency, which was also d
rived on the basis of a stochastic approach@2#. Here we
found furthermore the existence of the characteristic ti
scale 1/vc and the related scaling law, which implies that t
self-similarity of the time series of the on-off intermittenc
holds only for the shorter time scale than 1/vc .

Is the existence of the characteristic time scale 1/vc spe-
cific to the model or universal? Let us consider the aver
u-

r-
-

e

e

and the variance of the local expansion rates in the transv
direction to the subspace in which the synchronized solu
is located, which is respectively denoted byL ands in the
following. The former is called transverse Lyapunov exp
nent. In the present modelL is given by the average o
lnudxn11 /dxnu. There are two length scalesLt andst1/2. The
former measures the linear growth of the burst, while
latter the Brownian-motion-like fluctuation. Equating the
two length scales, we obtain the characteristic time scat
5tc5s/L2 by which the Brownian motion and the linea
growth are roughly separated. Above discussions are not
pendent on details of the model concerned. Thus we bel
that the existence of the characteristic time scaletc is uni-
versal.

To confirm this universality we perform the following nu
merical test. We use the stochastic model which that used
Fujisaka and Yamada@16# and simple coupled maps. Th
stochastic model is given byxn115xnexp(e2xn1zn), where
e is a control parameter andzn is a random variable with
^zn&T50, ^znzn8&T5dnn8 , where ^•••&T means the long
time average. For 0,e!1, xn shows on-off intermittency.

FIG. 3. Scaling function and the scaled power spectra of
numerical models ate50.005,0.01,0.05.
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The coupled maps areyn115(12c)g(yn)1cg(zn), zn11
5(12c)g(zn)1cg(yn), wherec is a coupling intensity and
g(y) is the mapping function given either byg(y)
5y/a, (0<y,a), (12y)/(12a), (a<y,1) with a
50.2 ~tent map! or by g(y)5r 2y2 with r 51.7 ~logistic
map!. When the couplingc is greater than the critical valu
c* , the synchronized motion is stable, and fore[(c*
2c)/c* !1 the on-off intermittency is observed in the rel
tive coordinatexn[yn2zn . For three models, the powe
spectra of xn are numerically calculated fromI (v)
5^u(n50

T21xne2 ivnu2/T&, whereT5222 and^•••& denotes the
initial ensemble average over 1000 points. In Fig. 3,
show the theoretical scaling function and numerical pow
spectra ate50.05,0.01,0.005.

This numerical result supports the universality of the sc
ing law of the power spectrum with the characteristic tim
scaletc found in the solvable map. The coincidence betwe
the theoretical and numerical scaling functions is relativ
good for the coupled tent map and for the stochastic mo
A remarkable deviation is observed for the logistic map.
m
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this case the power spectrum does not follow even the –
power-law decay that is a well-known feature of the on-
intermittency @2–5#. However, the scaling law itself hold
clearly. It should be made clear in the future where the
viation comes from. Nonhyperbolicity or long time correl
tion is thought to be an important factor.

In fact, Fujisaka and Yamada analytically derived t
power spectrum of the on-off intermittency for a multiplic
tive noise system, which coincides with Eq.~2! @17#. Thus it
has been shown analytically as well as numerically that
scaling law holds in both deterministic and stochastic s
tems. We may conclude that the scaling law with the ch
acteristic time scaletc is universal.~The universality of the
–1/2 power-law decay has been recognized on the stoch
approaches and the discussions of temporal fluctuation
the transverse Lyapunov exponent@2,4,5#.! We hope that this
scaling law will be confirmed experimentally. We thank H
rokazu Fujisaka, Takehiko Horita, Masayoshi Inoue, Arka
Pikovsky, and Stefan Thomae for illuminating discussion
ki,
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