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Universal scaling law of the power spectrum in the on-off intermittency
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The power spectrum of the solvable on-off intermittency model previously introduced by the authors is
analytically derived. A scaling law holds in the neighborhood of the critical point. Its universality is numeri-
cally confirmed for coupled maps and a stochastic md&4063-651X98)14111-9

PACS numbes): 05.45+b, 64.60.Fr

Fujisaka and Yamada first found an intermittent behaviotthe coupling is strong enough, the two oscillators are syn-
in coupled chaotic oscillators, which occurs when the synchronized. As the coupling is decreased, the system reaches a
chronized state is brokefil]. In their seminal papers this critical point at which the synchronization is broken. Rét
intermittency was calledype B intermittencyor intermit-  andx be the center-of-mass and relative coordinate, respec-
tency caused by chaotic modulatidhowever, the namen-  tively. Just after the synchronization was brokerbehaves
off intermittencyis mostly used in the current literature. This in an intermittent manner. This is called on-off intermittency.
phenomenon has been observed in various nonlinear systeiée proposed a model in which the dynamicsXoandx is
[1-10. When the synchronized state is stable, the chaotigiven by the following piecewise linear map:
attractor is located in a smooth invariant manifold of lower
dimension than that of the full phase spgb¢ Slightly be-

yond the critical point, at which the synchronized state be- Xnla, 0=X,<a,
comes unstable for the perturbation out of the invariant 1-X
manifold, the orbit escapes far away from the invariant mani- Xni1= 1—a”, asX,<1,

fold (burst oron statg but returns to its neighborhood and
stays there for a long tim@aminar phase ooff statg. This
temporal evolution is repeated in an irregular manner. The
nameon-off intermittency comes from this behavior. On the

-2 2
other hand, most of the intermittency discussed so far, so- (b, 0<xp=<b” 0<Xy<a,
called Pomeau-Manneville intermittendypes I-Ill), is bXy, 0=x,<b? asX,<1,
caused by linear instabilities of periodic trajectori&g,12. b—x,

Though the on-off intermittency is a deterministic phe- Xpps = m b2<x,<b,
nomenon, the theory is founded on stochastic approaches
[2,4]. In our previous papefl3] we started to construct a Xp—b _
theory based on a deterministic approach, in which we pro- 1-b°’ b<x,<1,
posed a map. It enabled us to obtain the exact expression of \

the distributions of burst amplitudes and of laminar dura-
tions, both of which characterize the on-off intermittency
very well because of their power-law behaviors. We derivewhere b=[a/(1—a)]*®. The detailed derivation of the
analytically the power spectrum of the solvable map in themodel from a general coupled system is given[bg]. We
present paper, which is expressed by a scaling function in thexpand the manifold in the vicinity of the invariant one caus-
neighborhood of the critical point. We give then a plausibleing the on-off intermittency, and take the lowest order. We
discussion and a numerical test that support that the scalirglso add the mechanism of reinjection, which enables us to
law is universal. treat the whole model analytically. The reinjection process
We can analytically obtain the power spectrum of someoccurs at a distance of the invariant manifold. Thus it does
low-dimensional maps using the Frobenius-Per@®B) op-  not affect the characteristic statistics of the on-off intermit-
erator. If the map is piecewise linear and has a Markov partency. We divide the phase spaRe={(X,x)|0<X<1,0<x
tition, the FP operator can be treated as a mdtt. The <1} into the domainsR;; (i=1,2;j=1,2,... ) defined
simplest case in which the on-off intermittency appears is @s R;;={(X,x)|0=X<a,bl<x< bi~1}, Ry ={(X,x)|a
coupled system consisting of two chaotic oscillators. WhensX<1bl<x<b!™1. Set Rj=R;;UR;;, and we haveR
=R;UR;UR3---. The domainRy; is mapped intoR;_,
andR;; 1, Ry (j=3) into Rj;;. The domainR; andR,
*Present address: Department of Applied Analysis and Complesre mapped int&®R Thus the domainR;; andR;; construct
Dynamical Systems, Graduate School of Informatics, Kyoto Uni-a Markov partition ofR. The elements of the FP matrix of
versity, Kyoto 606-8501, Japan. this system are given as follows:
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Hja=1-b, j=1,

Hj.=b(1-b), =1,

ijj+2:ab2, J?l,

,=(1—a)b™ !, j=4,

Hi;=0, otherwise.
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—a)/b. In the same way, the adjoint of th&,1) element is
given by (1+ B8)An_>+ ByCn—_2, SO that we have

Ri1=[(1+B)An_2tBYCn_2l/[(1+a+B)An_»

—ayBn 2+ ByCh-2]. 1)
Each ofA,,, By, andC,, is the determinant of a definite
m-dimensional matrix, and can be expressed by the determi-
nants of the lower dimensional matrices, which is summa-
rized as

The FP matrix always has a nondegenerate eigenvalue of

unity [15]. Let the corresponding right and left eigenvector

h; and v;, respectively. The probability densitl?(x) is

given byP(x) =E]?°:1hjEj(x), where the characteristic func-
tion Ej(x) is equal to 1 forxeR; and O otherwise. The

elementvJ corresponding to the W|dth @ in the x direc-
tion is given byv;=b’" Y(1-Db). The eIemenh is given by
h,=r(gq+vy), h2—r(q+v2) and h; —r(q+vJ %) for j
=3, wherea,=1/3, a=a,(1+e), b= [a/(1—a)]*? q=

—b(1-ab?»?)/(1-a), v=[\(4—3a%a—a]/(2ab), v,
=[1+ab*(1-1%)], v,=[1+ab’v(1-v)], and r=[q

+(1—b)v;+b(1—b)v,+b3(1—b)/(1—bwv)] ! By use of
the FP matrix the power spectrurfw) is given by

|<w>=§ 01U (2 RERim] = 8im) Uhin,

whereR),, is thelm element of 1/E—zH) [14]. The unit
matrix and the FP matrix are denoted Byand H, respec-
tively, andz=exfiw]. The variableu, is thelth element of
the observable under consideration. The real parZ aé
denoted by ReZ].

Am+3=Ams2— 752Am: 0,

BmizT ¥Bmi1— VzaBm:AerZ"' Y6Am,

Cin+3T ¥Cms1— 725Cm: (6—=1)Am+1— ¥OAn.

The solutionsA,, of the third-order linear homogeneous
difference equation are written in the fori,=Ap7
+App; A3 (lpal=[p2l=|psl), wherepy, p,, andps
are the solutions of the characteristic equatiph— p?
—y8?°=0 andA,, A,, and A, can be expressed by first
three terms. We havA,,~A,p} for m—c. The solutions
B, and C,, of the third-order linear inhomogeneous differ-
ence equation are expressed by the general solution added
by the special solution. Since each of the moduli of the so-
lutions of the characteristic equation 8f, andC,, is shown
to be less thamp,|, only the contribution of the special so-
lution is appreciable fom—c~. Following the method of
variation of constants, we substituBs,=Bp!" into the dif-
ference equation foB,,, and hereafter we denojg by p,
so that we have8=BA,, Bi=[p%+ y8]/[p3+ yp+ 6v?].

For simplicity, we consider hereafter the binary time se-In the same way foC,, we haveC=C;A,, C;=[(5—1)p

ries in whichu;=1 for1=1,2, u=0 for |=3. The laminar

—v8)/[p3+ yp+ 6¥?]. When we take the contribution of

and burst phase correspond to 0 and 1, respectively. In thig™ only into account form—~, Eq. (1) reduces toR;;

case we need the four elemems;, Ry, Ry, Ry, only.
The elemenR;; is given by the adjoint of thej element of
E-zH d|V|ded by|E—zH]|. It can be shown thdE—zH]| is
given by the relation |[E—zH/=(1+a+8)An_>
—ayBn_ 2+ ByCn-
trix, where a=—2z(1-b), B=ba, y=—zal?, 6=-z(1

=[(1+B)+ByCil[(1+a+pB)—ayBsi+ ByCs], where
the common factoA,p™ 2 was removed. In the same way

we haveRy,=[ - B+ ByB¢]/[(1+a+B)—ayB;i+ ByCs],

Ry1=[—a—ayCi]/[(1+a+B)—ayBi+ ByCi], Ryp=[1

, for the mdimensional truncated ma- +a—ayB;]/[(1+a+ B)— ayB;+ ByCs]. Thus we have

the analytical expression of the power spectrum
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FIG. 1. Power spectra of the solvable map
at €=0.001 (¢), 0.002 (+), 0.003 (),
0.005 (x), 0.01 (A).
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FIG. 2. Scaling function and the original
power spectra of the solvable map whose
angular frequency is scaled hy,=27e? at e
=0.001 (¢), 0.002 (+), 0.003 (),
0.005 (X), 0.01 (V).
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l(w)=(1—b)(h;—bhy)(2 REl nym/l gerd — 1), and the variance of the local expansion rates in the transverse
direction to the subspace in which the synchronized solution
lnum=p2+ yp+ y8(y+9), is located, which is respectively denoted Ayand o in the
following. The former is called transverse Lyapunov expo-
lger= (14 a+ B—ay)p?+ y(1+a+ BS)p nent. In the present mode\l is given by the average of

In|dx, 1 /dx,|. There are two length scalést andot'2 The
former measures the linear growth of the burst, while the
Figure 1 depicts the power spectra at=0.001, latter the Browman-motlon-_llke fluctuation. _Equaﬁmg these
two length scales, we obtain the characteristic time stale
0.002,0.003,0.005,0.01. 2 : - X ;
=7.=0g/A* by which the Brownian motion and the linear
growth are roughly separated. Above discussions are not de-

+y8(y+ 6+ Sa+ 6B).

Taking the lowest order of and w, we have

f /2 pendent on details of the model concerned. Thus we believe
l(w)= —=Rg —————|, that the existence of the characteristic time scalés uni-
V2 | Vels—iw—el2 versal.

To confirm this universality we perform the following nu-
f=4(53t2— 42t —30)/[ 91/2( — t2+ 4t — 2)]~0.2630486, merical test. We use the stochastic model which that used by
Fujisaka and Yamadfl6] and simple coupled maps. The

t=213 stochastic model is given by, ;=X,exple—x,+Z,), where
, . ) € is a control parameter ang, is a random variable with
which can be expressed by the scaling function (L)7=0, {(Lnln)1=nm » Where (---); means the long

‘ time average. For € e<1, X, shows on-off intermittency.

, (2) arb. units i . . . T T
Vi+(8mx)2+1

where the scaled angular frequenky w/w, were intro-
duced. As we will show later, the characteristic time is given
by 7.=c/A?, with the transverse Lyapunov exponefit
~(In2/3) and its varianceo=(In 2/3)>—(In 2/3)e for e
—0, so that we have,=1/e? andw.=27/7,=2me>. This
scaling function and the original power spectra whose angu-
lar frequency is scaled by, are shown in Fig. 2.

The scaling function behaves &&/2 for x<1 andf/yx
for x>1. The latter is nothing but the —1/2 power-law decay
of the power spectrum known as one of the remarkable char-
acteristics of the on-off intermittency, which was also de-
rived on the basis of a stochastic approd2h Here we Coupled Logistic Map
found furthermore the existence of the characteristic time .
scale 1. and the related scaling law, which implies that the 1072 10°
self-similarity of the time series of the on-off intermittency
holds only for the shorter time scale thanwl/

Is the existence of the characteristic time scale.ldpe- FIG. 3. Scaling function and the scaled power spectra of the
cific to the model or universal? Let us consider the averag@umerical models a¢=0.005,0.01,0.05.
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The coupled maps arg,.;=(1—c)g(y,) +ca(z,), z,+1 this case the power spectrum does not follow even the —1/2
=(1-c)g(z,) +cg(yn), wherec is a coupling intensity and power-law decay that is a well-known feature of the on-off
g(y) is the mapping function given either byg(y) intermittency[2-5]. However, the scaling law itself holds
=yla, (Osy<a), (1-y)/(1—a), (asy<1l) with a clearly. It should be made clear in the future where the de-
=0.2 (tent map or by g(y)=r—y? with r=1.7 (logistic  viation comes from. Nonhyperbolicity or long time correla-
map. When the coupling is greater than the critical value tjon is thought to be an important factor.

¢, the synchronized motion is stable, and fer(c, In fact, Fujisaka and Yamada analytically derived the
—c)/c, <1 the on-off intermittency is observed in the rela- power spectrum of the on-off intermittency for a multiplica-
tive coordinatex,=y,—z,. For three models, the power tjye noise system, which coincides with E&) [17]. Thus it
spectra of x, are numerically calculated fromi(®)  has been shown analytically as well as numerically that the
=(|Zp=oxne ™ “"?T), whereT=2?2and(- - -) denotes the ~ scaling law holds in both deterministic and stochastic sys-
initial ensemble average over 1000 points. In Fig. 3, Wetems. We may conclude that the scaling law with the char-
show the theoretical scaling function and numerical powepcieristic time scale, is universal.(The universality of the

spectra a=0.05,0.01,0.005. —1/2 power-law decay has been recognized on the stochastic

. This numerical resuit supports the universality Of_ the s_cal'approaches and the discussions of temporal fluctuations in
ing law of the power spectrum with the characteristic time

. - the transverse Lyapunov expon¢di4,5].) We hope that this
scaler, found in the solvable map. The coincidence betweenScaling law will be confirmed experimentally. We thank Hi-

the theoretical and numerical scaling functions is relatively okazu Fujisaka, Takehiko Horita, Masayoshi Inoue, Arkady

good for the coupled tent map and for the stochastic model.. . 7 ) .
A remarkable deviation is observed for the logistic map. InL'kOVSky’ and Stefan Thomae for illuminating discussions.
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